65 research outputs found

    Enabling pulsar and fast transient searches using coherent dedispersion

    Full text link
    We present an implementation of the coherent dedispersion algorithm capable of dedispersing high-time-resolution radio observations to many different dispersion measures (DMs). This approach allows the removal of the dispersive effects of the interstellar medium and enables searches for pulsed emission from pulsars and other millisecond-duration transients at low observing frequencies and/or high DMs where time broadening of the signal due to dispersive smearing would otherwise severely reduce the sensitivity. The implementation, called 'cdmt', for Coherent Dispersion Measure Trials, exploits the parallel processing capability of general-purpose graphics processing units to accelerate the computations. We describe the coherent dedispersion algorithm and detail how cdmt implements the algorithm to efficiently compute many coherent DM trials. We present the concept of a semi-coherent dedispersion search, where coherently dedispersed trials at coarsely separated DMs are subsequently incoherently dedispersed at finer steps in DM. The software is used in an ongoing LOFAR pilot survey to test the feasibility of performing semi-coherent dedispersion searches for millisecond pulsars at 135MHz. This pilot survey has led to the discovery of a radio millisecond pulsar -- the first at these low frequencies. This is the first time that such a broad and comprehensive search in DM-space has been done using coherent dedispersion, and we argue that future low-frequency pulsar searches using this approach are both scientifically compelling and feasible. Finally, we compare the performance of cdmt with other available alternatives.Comment: 8 pages, 7 figures, submitted to Astronomy and Computin

    LOFAR discovery of the fastest-spinning millisecond pulsar in the Galactic field

    Get PDF
    We report the discovery of PSR J0952-0607, a 707-Hz binary millisecond pulsar which is now the fastest-spinning neutron star known in the Galactic field (i.e., outside of a globular cluster). PSR J0952-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope γ\gamma-ray sources. PSR J0952-0607 is in a 6.42-hr orbit around a very low-mass companion (Mc0.02M_\mathrm{c}\gtrsim0.02 M_\odot) and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from r=22.2r^\prime=22.2 at maximum to r>23.8r^\prime>23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3-σ\sigma upper limit on the 0.3100.3-10 keV X-ray luminosity of LX<1.1×1031L_X < 1.1 \times 10^{31} erg s1^{-1} (using the 0.97 kpc distance inferred from the dispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α3\alpha\sim-3 (where SναS \propto \nu^{\alpha}). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952-0607.Comment: 9 pages, 3 figures, 1 table, published in ApJ letter

    Revealing the Dynamic Magneto-ionic Environments of Repeating Fast Radio Burst Sources through Multi-year Polarimetric Monitoring with CHIME/FRB

    Full text link
    Fast radio bursts (FRBs) display a confounding variety of burst properties and host galaxy associations. Repeating FRBs offer insight into the FRB population by enabling spectral, temporal and polarimetric properties to be tracked over time. Here, we report on the polarized observations of 12 repeating sources using multi-year monitoring with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) over 400-800 MHz. We observe significant RM variations from many sources in our sample, including RM changes of several hundred radm2\rm{rad\, m^{-2}} over month timescales from FRBs 20181119A, 20190303A and 20190417A, and more modest RM variability (ΔRM\rm{\Delta RM \lesssim} few tens rad m2^{-2}) from FRBs 20181030A, 20190208A, 20190213B and 20190117A over equivalent timescales. Several repeaters display a frequency dependent degree of linear polarization that is consistent with depolarization via scattering. Combining our measurements of RM variations with equivalent constraints on DM variability, we estimate the average line-of-sight magnetic field strength in the local environment of each repeater. In general, repeating FRBs display RM variations that are more prevalent/extreme than those seen from radio pulsars in the Milky Way and the Magellanic Clouds, suggesting repeating FRBs and pulsars occupy distinct magneto-ionic environments

    LOFAR Detection of 110-188 MHz Emission and Frequency-Dependent Activity from FRB 20180916B

    Get PDF
    FRB 20180916B is a well-studied repeating fast radio burst source. Its proximity (~150 Mpc), along with detailed studies of the bursts, have revealed many clues about its nature -- including a 16.3-day periodicity in its activity. Here we report on the detection of 18 bursts using LOFAR at 110-188 MHz, by far the lowest-frequency detections of any FRB to date. Some bursts are seen down to the lowest-observed frequency of 110 MHz, suggesting that their spectra extend even lower. These observations provide an order-of-magnitude stronger constraint on the optical depth due to free-free absorption in the source's local environment. The absence of circular polarization and nearly flat polarization angle curves are consistent with burst properties seen at 300-1700 MHz. Compared with higher frequencies, the larger burst widths (~40-160 ms at 150 MHz) and lower linear polarization fractions are likely due to scattering. We find ~2-3 rad/m^2 variations in the Faraday rotation measure that may be correlated with the activity cycle of the source. We compare the LOFAR burst arrival times to those of 38 previously published and 22 newly detected bursts from the uGMRT (200-450 MHz) and CHIME/FRB (400-800 MHz). Simultaneous observations show 5 CHIME/FRB bursts when no emission is detected by LOFAR. We find that the burst activity is systematically delayed towards lower frequencies by ~3 days from 600 MHz to 150 MHz. We discuss these results in the context of a model in which FRB 20180916B is an interacting binary system featuring a neutron star and high-mass stellar companion.Comment: Accepted for publication by ApJ
    corecore